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SUMMARY 

This paper describes an efficient parallel algorithm of the cellular automaton (CA) method for microscopic fluid 
dynamics simulations. The CA method is parallelized with so-called multispin coding and with one-dimensional 
domain decomposition. The parallel CA method has a constant computational load balance and small data transfer 
between only nearby domains. We have applied the parallel CA method to a large-scale Poiseuille flow simulation 
and an immiscible two-phase flow simulation on a Fujitsu APIOOO with 64 processors. 
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INTRODUCTION 

In fluid dynamics a particle simulation method called the cellular automaton (CA) method has been 
studied since a hndamental model for incompressible Navier-Stokes fluid was introduced by Frisch, 
Hasslacher and Pomeau (the FHP model).’,2 

The CA method has some advantages over traditional numerical methods such as the finite 
difference method. First, the microscopic approach of the CA method enables us to simulate more 
complicated flows (e.g. immiscible two-phase flow,3 chemical reactive flow4). Second, there is no 
round-off error because the calculation of the CA method is represented by bit operations completely. 
Moreover, the CA method is suitable for parallel processing because of its discrete Parallel 
processing is necessary for the practical use of the CA method because it requires very large computer 
resources. It is important to develop an efficient parallel algorithm and to remove difficulties for 
parallelization in the applications. 

We have developed the parallel CA method with so-called multispin coding’ and with one- 
dimensional domain decomposition. In this paper the high efficiency of the parallel CA method is 
shown. As applications of the parallel CA method, a large-scale Poiseuille flow simulation and an 
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Figure 1. Particle motion in CA method 

immiscible two-phase flow simulation are presented. These simulations have been implemented on a 
Fujitsu APlOOO with 64 processors (peak performance 960 MIPS). 

MATHEMATICAL MODEL 

The CA method is a completely discrete dynamic system. In the FHP model the motion of seven kinds 
of particles is defined on a regular tiangular lattice' (see Figure 1). There are collision processes and 
propagation processes in the unit time step. Particles change or maintain their velocities while 
conserving mass and momentum at each node by collision, then move to a neighbouring node in the 
direction of their velocities by propagation. Macroscopic information of flow is obtained through a 
statistical interpretation of particle data. 

This simple mathematical model can be represented by so-called multispin coding.' In multispin 
coding the existence of a particle at each node is represented by one bit called a cell. Cells are packed 
into the machine word and calculated simultaneously by bit operations on words (collision by Boolean 
operations, propagation by bit shifts and substitutions). Therefore the calculation is very efficient, so 
that a large number of particles can be dealt with. 

PARALLELIZ ATION 

The calculation of the CA method is very local; in the FHP model the collision process occurs 
independently at each node and propagation processes act on neighbouring nodes. Moreover, cell data 
can be constructed in arrays corresponding to the lattice. Thus the CA method has a fine grain structure 
in space and is therefore parallelized with the domain decomposition technique. This type of 
parallelization is called single-instruction stredmultiple-data stream (SIMD). 
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The computational load of multispin coding does not depend on the number of particles but on the 
number of nodes, because node states are updated by the fixed bit operations on each cell. Therefore 
the computational load balance can be maintained by decomposing the domain according to each 
processor’s ability only once. It is not necessary to consider dynamical computational load balancing. 
In this parallel algorithm, data transfer between nearby domains is necessary because of the 
interactions between neighbouring nodes. In propagation processes, cell data at the boundary of 
decomposed domains are transferred. 

In order to decrease the communication time for data transfer, we have considered domain 
decomposition patterns suitable for the CA method. There are two typical domain decomposition 
patterns: one-dimensional and two-dimensional (see Figure 2). Generally the parallel processing with 
domain decomposition technique adopts two-dimensional decomposition because the boundary data 
are inversely proportional to the number of decomposed domains. However, our parallel CA method 
adopts one-dimensional decomposition because of the following advantages. 

1. Simple network. Corresponding to the triangular lattice of the CA method, the network for two- 
dimensional decomposition has six neighours. On the other hand, there are only two neighbours 
for one-dimensional decomposition. Therefore only a few data sets are transferred at each time 
step in one-dimensional decomposition. Moreover, the simplicity enables us to develop the 
software and hardware easily. 

2. Suitability for data structure. Cell data can be decomposed in parallel with the machine word line 
one-dimensionally. Then all the boundary data can be transferred on words simultaneously. 

We have compared two kinds of domain decomposition patterns in a 325,680-node calculation of 
the FHP model. Let T,, be the elapsed time with n processors. We define the speed-up factor S,, = T,/T,,. 
The relation between the number of processors and S,, for two kinds of decomposition patterns is 
shown in Figure 3. We can see that one-dimensional domain decomposition is more effective than two- 
dimensional and its speed-up is approximately linear. 

SIMULATIONS 

The following simulations by the parallel CA method present difficulties for parallelization in terms of 
computational load balance and data transfer. 

Large-scale Poiseuille $ow 

A Poiseuille flow with Reynolds number 2155 has been simulated using the FHP model. The 
Reynolds number of the CA flow is estimated from the macrodynamical equations derived from the 
microscopic conservation equations.’ 

In this simulation there is a difficulty for parallelization. The extra force calculation required to keep 
the mean velocity constant causes imbalance of the computational load. We therefore assigned the 
extra force calculation to only one processor for the inlet, and in order to maintain the computational 
load balance, we decreased the domain size of the inlet (see Figure 4). This type of parallelization is 
called multiple-instruction stredmultiple-data stream (MIMD). 

We confirmed that there is no idling time for this implementation caused by the extra force 
calculation using the AP 1000’s performance monitor. Figure 5 shows the relation between time and the 
number of operating processors during 10 time steps. We can see that most of the processors were 
always in calculation time (black area) but in very short communication time (white area). This 
calculation (5,171,200 nodes, 1,500,000 time steps) took 59 h on the AP1000. 

Figure 6 shows the velocity distributions after 0, 300,000, 600,000 and 1,500,000 steps. The 
simulation results are in good agreement with the theoretical curve. 
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Figure 2. Domain decomposition patterns 

Immiscible two-phase jlow 

The first immiscible model built upon the FHP model was introduced by Rothman and Keller (the 
RK model).' The RK model is represented by two kinds of coloured particles and based on a 
minimization principle. The collision rule makes the coloured particles separate into two phases at 
each node. However, the calculation is too complex to be represented by multispin coding and 
consequently the RK model takes a much longer calculation time than the FHP model. 
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Figure 3. Speed-up of FHP model 
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Figure 4. Parallelization of Poiseuille flow 
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Figure 6. Poiseuille flow by CA method 
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Figure 9. Speed-up of immiscible model 
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Figure 10. Phase separation by CA method 
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Therefore we have developed a simplified immiscible model with multispin coding as 

1. denotation of the superior colour at each node 
2. decision of the local colour potential from the colour of neighbouring nodes 
3. change in particle direction according to the colour potential 

where all data are represented by bit data and all directions are restricted to the lattice. Figure 7 shows 
an example of the collision rule of our model. Note that the dynamics of a single phase is the same as 
in the FHP model and that the colour potential energy changes into kinetic energy in our model. 

In a phase separation such as water/oil interaction the surface tension plays an important role. Here 
the surface tension of our model has been tested, the same as the RK modeL3 A bubble of a fluid is set 
in another fluid initially. When the system attains equilibrium, the bubble radius R and the pressure 
difference dP at the interface are measured. Figure 8 shows that the surface tension of our model 
satisfies Laplace’s law: dP is proportional to the inverse of R. 

The parallel CA method of our simplified immiscible model has been applied to a phase separation 
simulation. There is another data transfer to the neighbouring node in the immiscible collision process. 
The data are concerned with the colour information at each node. However, it can be minimized by the 
previously discussed simplification of the model. Moreover, there is no idling time because of the 
constant computational load due to multispin coding. Therefore we achieve parallel efficiency as good 
as for the FHP model (see Figure 9). This simulation (16,384 nodes, 30,000 time steps) was calculated 
in 3 min by the AP1000. 
Figure 10 shows the non-equilibrium behaviour of our model after 0, 1000,5000 and 30,000 steps. We 
can observe that the random mixture of two fluids is eventually separated into two phases completely. 

For practical phase separation simulations, more exact microscopic models are necessary. We 
consider our simple model to be a prototype of such models. 

CONCLUSIONS 

A parallel algorithm of the CA method has been developed. There is no idling time because of the 
constant computational load due to multispin coding and the communication time is decreased by one- 
dimensional domain decomposition. 

Our parallel CA method has been applied to two examples: a large-scale Poiseuille flow by MIMD- 
type parallelization and an immiscible two-phase flow by simplifying the mathematical model. These 
simulations have been calculated efficiently on a Fujitsu API 000. 

The high efficiency of the parallel CA method shows its feasibility for massively parallel processing 
of larger-scale and more complex microscopic fluid dynamics simulations. 
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